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Summary: Black-Box Multigrid for Overlapping Grids

1. Automatic generation of coarse grid levels and coarse grid interpolation

points.

2. Generation of any number of multigrid levels (as allowed by the number

of grid points).

3. Automatic generation of coarse grid equations through Galerkin

averaging of fine grid equations.

4. Optimised for pre-defined equations (such as the Laplace and Heat

operator) and optimised for cartesian grids (speed and memory usage).
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Problem Specification

Suppose that we wish to solve an elliptic boundary value problem on a domain

Ω ⊂ Rd given by

Lu = f x ∈ Ω,

Bu = g x ∈ Γ = ∂Ω.

We can discretize these equations on an overlapping grid resulting in a set of

discrete equations,

Lhuh = fh xi ∈ Ωh

Bhuh = gh xi ∈ Γh

Ihuh = 0 xi ∈ ΓI
h (interpolation)

It is easy to coarsen each component grid of an overlapping grid. It is more difficult

to determine interpolation points on the coarse grids.
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Background

The first overlapping grid computations were apparently performed by G. Starius, a

student of Heinz-Otto Kreiss, who solved elliptic and hyperbolic problems [6, 7].

The first MG solver for overlapping grids seems to be the work of J. Linden

reported in Stüben and Trottenberg [8] who showed results for a model problem.

Chesshire and Henshaw [3] extended the CMPGRD overlapping grid generator [1]

to generate multigrid levels for general two-dimensional domains. These grids were

used to solve elliptic problems in two dimensions for general domains and showed

good multigrid convergence rates.

Due to the difficulty in generating the interpolation equations to couple the

equations on the coarse grids, most if not all other researchers have left the coarse

grids uncoupled, applying a zero dirichlet or neumann type boundary condition at

interpolation points, Tu & Fuchs [9, 10], Hinatsu & Ferziger [4], Zang & Street [11].

This approach has been called incomplete multigrid (ICMG) by Hinatsu &

Ferziger. In general it would seem that ICMG can converge no better than an

overlapping Schwartz iteration with a convergence rate 1−O(δ) where δ is the

relative width of the overlap.
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Multigrid Operators

The fundamental structure of the multigrid algorithm for overlapping grids remains

the same as for a single grid. Introduce the following operators

S : the composite smoothing operator, an iteration that approximately solves the

equation and is effective at reducing the high frequency components of the

error.

Rk−1

k : restriction operator, the operator that transfers a grid function from the

fine grid to the coarse grid.

Pk+1

k : prolongation operator, the operator that transfers a grid function from the

coarse grid to the fine grid.
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Multigrid Algorithm

while not converged do

smooth ν1 times

v1 ← Sν1v1

form the defect and transfer to the coarser grid

f2 ← R2
1(f1 −A1v1)

“solve” the defect equation

A2v2 ≈ f2

correct the fine grid solution from the coarse grid solution

v1 ← v1 + P1
2v2

smooth ν2 times

v1 ← Sν2v1

end while

The coarse grid equations can be approximately solved in a recursive many by using

an even coarser grid. On the very coarsest grid the equations are solved with a

sparse matrix solver using either an iterative or direct method.

6



Composite smoothing operator

for g = 1, . . . , ng do (loop over component grids)

if g > 1

interpolate points on grid Gg

end if

for m = 1, . . . , νg (multiple sub-smooths)

if m < νg

where mask> 0

u← u + ω(Lu− f) (do not change interpolation pts)

end where

else

u← u + ω(Lu− f)

end if

apply boundary conditions to grid Gg

end for

end for

interpolate all points on the overlapping grid G.
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Composite residual operator

A valid defect for the interior PDE can be computed at all discretization points but

not at interpolation points. In some cases a discretization point on the coarse grid

point will, using the full-weighting operator, require a defect to be defined at the

interpolation point. We therefore provide a value of the defect at interpolation

points that approximates the defect at nearby interpolation points. We have

evaluated two different ways of treating this case:

1. interpolate the fine grid defect from other grids to determine the defect values

at the interpolation points.

2. obtain values at the interpolation points by extrapolating the values from

nearby discretization points.

We have found that interpolating the defect seems to produce the best results.
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In order to measure the convergence rate we introduce the following notation:

WU(i) = number of work units for iteration i ,

res(i) = residual for iteration i (maximum norm) ,

rate(i) = convergence rate (CR), res(i)/res(i-1) ,

ECR(i) = effective convergence rate ,

= (rate(i))
1/WU(i)

,

V(m,n) = denotes a V cycle with m pre-smooths and n post-smooths .

A work unit is defined to be the amount of work (number of multiplications)

required for a single Jacobi iteration. The work units reported here are only

reasonable approximations.
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i res rate WU ECR

1 6.5e + 00 0.161 4.7 0.68

2 2.6e + 00 0.402 4.7 0.82

3 1.1e + 00 0.431 4.7 0.83

4 4.8e − 01 0.430 4.7 0.83

5 2.1e − 01 0.432 4.7 0.84

6 9.0e − 02 0.433 4.7 0.84

7 3.9e − 02 0.435 4.7 0.84

8 1.7e − 02 0.437 4.7 0.84

9 7.5e − 03 0.439 4.7 0.84

10 3.3e − 03 0.441 4.7 0.84
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i res rate WU ECR

1 3.3e + 00 0.081 6.1 0.66

2 3.7e − 01 0.113 7.0 0.73
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7 6.6e − 06 0.165 6.1 0.74

8 9.6e − 07 0.144 6.6 0.75

9 1.0e − 07 0.109 6.1 0.70

10 1.3e − 08 0.122 6.1 0.71

0 2 4 6 8 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Residuals by component grid, variable smoothing

L 2 n
or

m

iteration

grid1
grid2
grid3
grid4

Fixed number of sub-smooths per grid Variable number of sub-smooths per grid

10



Automatic Generation of Coarse Grid Levels

The key ingredients to the coarsening algorithm are as follows:

1. interpolate ghost points on interpolation boundaries. When a component grid

is coarsened the new ghost points will be further from the boundary of the

grid. As a result the effective overlap between neighbouring component grids

will increase.

2. relax the accuracy and explicitness of the interpolation on coarse grids. As the

grids are coarsened we

(a) allow explicit interpolation to become implicit; implicit interpolation

requires less overlap.

(b) allow the width of the interpolation stencil to decrease; we thus allow each

point to have a possibly different interpolation width.

(c) allow a coarse grid interpolation point that has extended outside the

domain to be set equal to the closes point on the boundary
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Automatic Coarsening
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Automatic Coarsening
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Left: initial state.

Middle: after assigning from fine grid mask.

Right: after filling in extra interpolation points.
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An overlapping grid for an airfoil, 4 multigrid levels.
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An overlapping grid for a valve, 3 multigrid levels.
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Coarse Grid Equations Through Averaging

To automatically generate a coarse grid operator from a fine grid operator we can

average the operator on the fine grid and then restrict the result to the coarse grid.

This approach is known as Galerkin averaging. Given the fine grid operator Lk the

Galerkin coarse grid operators are defined as

Lk+1 := Rk+1

k LkP
k
k+1

where Rk
k+1 and Pk+1

k are restriction and prologation operators. These operators

are often taken to be the same as those used in the multigrid cycle.
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To illustrate the approach, and to show how the Galerkin averaging might be

implemented, consider a one-dimensional problem discretized with a three point

stencil,

aiui−1 + biui + ciui+1 = fi i = 1, 2, . . .

If we look at the stencil for rows i− 1, i, i + 1 arranged in a matrix then we get

ai−1ui−2 bi−1ui−1 ci−1ui 0 0

0 aiui−1 biui ciui+1 0

0 0 ai+1ui bi+1ui+1 ci+1ui+2
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If we replace row i by the weighted average of rows i− 1, i, i + 1 with weights α, β,

α then we get the wide stencil

αai−1ui−2 (αbi−1 + βai)ui−1 (α(ci−1 + ai+1) + βbi)ui (αbi+1 + βci)ui−1 αci+1ui+2

Typically we take α = 1/4, and β = 1/2.
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If we distribute the values at point i− 1 using ui−1 = 1

2
(ui−2 + ui) and at point

i + 1 using ui+1 = 1

2
(ui+2 + ui) then we have a wide stencil only defined at points

i− 2, i, i + 2,

âi ui−2 0 · ui−1 b̂i ui 0 · ui+1 ĉi+2 ui+2

âi = α(ai−1 +
1

2
bi−1) +

1

2
βai

b̂i = α(
1

2
bi−1 +

1

2
bi+1 + ci−1 + ai+1) + β(bi +

1

2
ai +

1

2
ci)

ĉi = α(ci+1 +
1

2
bi+1) +

1

2
βci

The coarse grid operator is then defined as

ac
iu

c
i−1 + bc

iu
c
i + cc

iu
c
i+1 = fc

i i = 1, 2, . . .

ac
i = â2i

bc
i = b̂2i

cc
i = ĉ2i
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As an example of the averaging process consider the 5-point discretization of the

Laplacian on a rectangular grid

A0 =









0 β 0

α −2(α + β) α

0 β 0









(initial 5-point stencil)

where α = 1/h2
x and β = 1/h2

y. Let Am denote the stencil after m steps of

averaging scaled by the factor 4m.

20



A0 =









0 β 0

α −2(α + β) α

0 β 0









(initial 5-point stencil)

A1 =









1

8
(α + β) 3

4
β − 1

4
α 1

8
(α + β)

3

4
α− 1

4
β − 3

2
(α + β) 3

4
α− 1

4
β

1

8
(α + β) 3

4
β − 1

4
α 1

8
(α + β)









(scaled stencil after 1 averaging)

A2 =









5

32
(α + β) 11

16
β − 5

16
α 5

32
(α + β)

11

16
α− 5

16
β − 11

8
(α + β) 11

16
α− 5

16
β

5

32
(α + β) 11

16
β − 5

16
α 5

32
(α + β)









(scaled stencil after 2 averaging)

A∞ =









1

6
(α + β) 2

3
β − 1

3
α 1

6
(α + β)

2

3
α− 1

3
β − 4

3
(α + β) 2

3
α− 1

3
β

1

6
(α + β) 2

3
β − 1

3
α 1

6
(α + β)









(limiting scaled stencil)

21



Ogmg: Overture’s Overlapping Grid Multigrid Solver

Ogmg can be called through the generic solver interface Oges. The multigrid levels

and coarse grids operators are built automatically.

CompositeGrid cg(...); // Get a grid from somewhere

CompositeGridOperators cgop(cg); // Define operators

Oges solver; // Define a solver

OgesParameters solverParameters; // Parameters for solver

solverParameters.set(multigrid); // Choose multigrid

solver.setOgesParameters(solverParameters);

solver.setGrid( cg );

// Choose a predefined equation:

solver.setEquationAndBoundaryConditions(laplaceEquation,cgop,bc, bcData );

realCompositeGridFunction u,f; // grid functions for solution and rhs

...

solver.solve(u,f); // solve ∆u = f
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grid d grid pts ng BC nl cycle CR ECR

square 2D 1282 1 D V(2,1) .027 0.49

square 2D 2562 1 D V(2,1) .028 0.49

square 2D 1282 1 N 4 V(2,1) RB .044 0.54

square 2D 1282 1 M 4 V(2,1) RB .029 0.50

annulus 2D 9, 657 1 D 4 V(2,1) RB .048 0.55

circle in a channel 2D 86, 130 2 D 4 V(2,1) RB .099 0.71

circle in a channel 2D 86, 130 2 D 4 V(1,1) RB .141 0.68

circle in a channel 2D 86, 130 2 N 4 V(2,1) RB .131? 0.71

airfoil 2D 11, 378 2 D 4 V(1,1)RB/Z .070 0.62

shapes 2D 6, 456 4 D 3 V(2,1)RB/Z .142 0.76

box 3D 323 1 D 4 V(2,1) .071 0.57

box 3D 643 1 D 4 .079 0.58

box 3D 323 1 M 4 V(2,1)RB .059 0.54

sphere in a box 3D 72, 519 3 D 3 V(2,1)RB .062 0.69

sphere in a box 3D 72, 519 3 MD 3 V(2,1)RB .053 0.68

ellipsoid in a box 3D 116, 620 4 D 3 V(2,1)RB .112 0.70

ellipsoid in a box 3D 116, 620 4 D 3 V(2,1)RB/Z .082 0.71

ellipsoid in a box 3D 737, 700 4 D 4 V(2,1)RB .145 0.76

5 spheres in a box 3D 437, 839 11 D 3 V(2,1)RB .081 0.73

Multigrid convergence rates for various grids. The number of component grids is ng and

the number of multigrid levels is nl. Boundary conditions, shown in the column labeled

BC, are D for Dirichlet, N for Neumann, M for mixed and DN for a mix of Dirichlet and

Neumann. CR is the average convergence rate per cycle, ECR is the average effective

convergence rate per cycle.
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Results from Ogmg

problem grid points CR cpu/cycle Memory reals/pt

circ in sq (2D) 1.1 million .056 .93 48 M 5.2

two circles (2D) 6.3 million .043 4.7 287 M 5.7

ellipsoid (3D ) 4.7 million .12 8.5 442 M 11.7

two spheres (3D) 10.2 million .085 29.2 1420 M 17.4

Performance and memory usage results for the predefined Laplace

operator which has been optimised for cartesian grids; 2.2 GigaHertz

Pentium workstation.
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Results from Ogmg

Solver grid pts its res CPU setup solve reals/pt

Ogmg cic 1.1e6 9 2.e-8 10.1 .92 9.2 5.2

PETSc cic 1.1e6 1268 2.e-8 934. 43. 891. 26.5

Ogmg ellipsoid 7.4e5 10 3.e-7 21.2 4.5 16.7 19.4

PETSc ellipsoid 7.4e5 50 3.e-7 44.4 23.7 20.7 55.6

A comparison of the setup and solution times for multigrid and a Krylov

space solver (bi-CG-stab) from PETSc
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Incompressible Navier-Stokes Equations

Laminar flow past a cylinder. Multigrid is used for the pressure solve and implicit

time-stepping. For 1.1 million grid points, OverBlown requires 320M, 7.6 s/step.
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